Combating Norovirus in Restaurants: Proper Sanitizer and the Wiping Step Matter - FoodSafetyTech

2022-09-24 10:39:48 By : Ms. Min Miao

According to the outcomes of the study, certain sanitizers are significantly more effective in destroying the norovirus, and all benefit from the addition of a wiping step.

A comparative study of four commercially available sanitizers found that an ethanol-based product was significantly more effective in destroying human norovirus (hNoV), and all products tested benefited from a wiping step to physically as well as chemically remove traces of the virus.

The purpose of the study, which was published in Food Microbiology (August 25, 2022), was to assess the anti-hNoV efficacy of various surface sanitizers when applied to a laminate material commonly used for restaurant tabletops.

Researchers from North Carolina State University, in partnership with GOJO, evaluated four products with different active ingredients (ethanol [EtOH], acid + anionic surfactant [AAS], quaternary ammonium compound [QAC] and sodium hypochlorite [NaOCl]) and a water control against two human norovirus strains—hNoV GII.4 Sydney and hNoV GI.6—and the cultivable surrogate Tulane virus (TuV). They used identical spray bottles and a robotic arm to wipe the surfaces to ensure consistency in methods between products.

“We had two major research questions. First, what is the efficacy of sanitizers commonly used by the retail food industry against human norovirus? Second, what is the relative importance of including a wiping step during the sanitizing process?” said Lee-Ann Jaykus, Ph.D., William Neal Reynolds Distinguished Professor of Food Microbiology at North Carolina State University and co-author of the study. “We found that on Formica, only one of the four products tested was able to provide any significant activity against human norovirus; the other three products inactivated only a negligible amount of virus.”

The researchers used controlled antiviral surface assays to assess the relative anti-hNoV efficacy of the sanitizers, and outcomes were compared following 30- and 60-second contact times without wiping and 30- and 60-second contact times with wiping.

Following a 30-second contact time with the EtOH-based product, log10 reductions of 3.6 ± 0.7, 4.1 ± 0.5 and 3.4 ± 0.2 were observed for GII.4, GI.6 and TuV, respectively. Treatment with all other products resulted in statistically significantly lower reductions in viral titer.

Following 60-second contact time with the EtOH-based product log10 reductions of 4.0 ± 0.5, 4.3 ± 0.6 and 6.3 ± 0.5 were observed for GII.4, GI.6 and TuV, respectively. The other formulated or diluted products produced ≤0.5 log10 reductions.

The addition of the wiping step provided greater log10 reductions in virus concentration for all products tested against all viruses.

“The addition of a wiping step to the sanitation process provided removal of 95% to 99.9% of the virus on the surface,” said Dr. Jaykus.

When comparing performance among the three viruses, “The performance against all three viruses was nearly identical for each of the four products,” said Dr. Jaykus. “In other words, if Product A inactivated 50% of one human norovirus strain, it also inactivated around 50% of the other human norovirus strain and the Tulane virus. This tells us that Tulane virus might be a better surrogate than the viruses currently used as proxies for human norovirus upon which to base label claims.”

When the paper towels were processed for residual virus five minutes after wiping, no evidence of residual virus could be detected on the used paper towels with the EtOH-based product treatments. For the NaOCl-based product, no detectable virus was present on spent paper towels used in wiping studies for GII.4 hNoVs, and relatively low concentrations of virus were recovered from paper towels for GI.6 and TuV. For the AAS-based product, the concentrations of virus recovered from the paper towels were approximately 2.3, 1.3 and 1.4 log10 lower than that of the untreated control for GII.4, GI.6 and TuV, respectively. For the QAC-based product and water, the concentration of virus recovered from the paper towels was similar to that of the initial dried inoculum, suggesting low (if any) virus inactivation by the product.

“One of the most interesting findings was that the quaternary ammonium-based compound (QAC) did not show any real anti-noroviral activity against the virus strains tested. This is important because the vast majority of the restaurant and retail sector in the U.S. routinely uses QAC-based products to sanitize tables in dining areas,” said Dr. Jaykus. “Further, we were able to recover infectious virus from paper towels used to wipe contaminated surfaces, which suggests that if the sanitizer does not kill the virus, towels used in wiping could spread viruses if reused on another surface.”

A food contact surface technology is helping the company mitigate risks.

Researchers from Guelph-based Bionano Laboratory have a developed a nanotechnology sensor for rapid detection at the point of care.

The pathogen kill-step is the most important step in the body fluid clean-up process. The preferred option is to use a disinfectant grade chemical instead of regular sanitizers.

Until a viable vaccine or an effective drug becomes available against Norovirus, rigorous implementation of food safety procedures, behavioral changes and continuous training of both foodservice workers and customers will remain the industry’s best practices at prevention and control.

The Food Safety Tech staff consists of freelance journalists and industry contributing writers with decades of experience in covering food safety issues under the categories of compliance, food laboratory and manufacturing processes and technologies, foodservice and retail, regulations and sustainability.

You can contact our writing staff via our Contact Page

Your email address will not be published. Required fields are marked *

For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use. I agree to these terms.

For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

I agree to these terms.

The CQC is a business-to-business conference and expo where cannabis industry leaders and stakeholders meet to build the future of the cannabis marketplace.

Back in person this year, the 10th annual Food Safety Consortium is an educational and networking event for Food Protection that has food safety, food integrity and food defense as the foundation of the educational content of the program. With a unique focus on science, technology and compliance, the “Consortium” enables attendees to engage in conversations that are critical for advancing careers and organizations alike. Delegates visit with sponsors & exhibitors to learn about cutting-edge solutions, explore three high-level educational tracks for learning valuable industry trends, and network with industry executives to find solutions to improve quality, efficiency and cost effectiveness in the evolving food industry.

© Copyright 2015 - 2022 Innovative Publishing Co. Inc., All Rights Reserved

Sign up for our FREE newsletters and get the top stories from FST right in your email inbox.

Food Safety Tech is the leading online trade journal. Join the Food Safety Tech community and stay engaged the way you want to!

We are using cookies to give you the best experience on our website.

You can find out more about which cookies we are using or switch them off in settings .

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.

We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.

We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.

If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.

Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.

Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.

In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.

You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.

Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.

The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.